PHOTOCHEMICAL REACTIONS OF FERROCENYL KETONES

J. D. COYLE and G. MARR

Department of Physical Sciences, The Polytechnic, Wolverhampton WV1 1LY(Great Britain) **(Rcceivcd February 16th, 1973)**

SUMMARY

Ultraviolet irradiation offormyl-, acetyl- and benzoyl-ferrocene inthepresence ofhydrogen- and electron-donors, leads to photoreduction only with tin(IV) hydrides. The photoreaction of the ketones with water or methanol was also studied.

INTRODUCTION

Earlier work' has suggested that ferrocenyl ketones are not susceptible to photochemical reduction by 2-propanol. This is in contrast to the corresponding benzene derivatives such as benzophenone, which is photoreduced efficiently to pinacol $\lceil \text{eqn. (1)} \rceil^2$.

$$
Ph2 C=O + (CH3)2 CHOH \xrightarrow{hv} Ph2C(OH)CPh2(OH) + (CH3)2C=O
$$
 (1)

Naphthyl ketones, however, require either a better hydrogen-donor such as tri-n-butyltin(lV) hydride3 or an electron-donor such as a tertiary amine4 for efficient reduction In the hydrogen abstraction process this difference is attributed to the lower energy of the first excited state of a naphthyl ketone $(\approx 245 \text{ kJ} \cdot \text{mol}^{-1})$ as compared to that of a phenyl ketone (285–300 kJ \cdot mol⁻¹), and to the difference of electron distribution in the excited states. For the phenyl ketone the excited state is (n, π^*) and **the oxygen atom has radical character, whilst for the naphthyl ketone the excited state** is (π, π^*) . With the tertiary amine the mechanism of the reduction is different, and the **amine acts initially as an electron-donor rather than as a hydrogen-donor to the excited state of the ketone in the first step of** the **reaction [eqn (2)].**

$$
[C_{10}H_7C(O)CH_3]^* + (C_2H_5)_3N \to [C_{10}H_7C(O)CH_3]^* + (C_2H_5)_3N^*
$$
 (2)
(C₁₀H₇ = 2-naphthyl)

In ferrocenyl ketones the lowest excited state is thought to be charge-transfer in nature⁵ and less than 170 kJ·mol⁻¹ in energy. This led us to investigate the photo**chemical behaviour of ferrocenyl ketones in the presence of different reducing agents.**

RESULTS AND **DISCUSSION**

Solutions of formyl- $[(1); R = H]$, acetyl- $[(1); R = CH_3]$, and benzoyl- $[(1);$

R= Ph] ferrocene were irradiated in the presence of reduciug agents with tight from a medium pressure mercury arc GJtered through quartx or Pyrex gJaas_ The hydrogen donors wem chosen for their diEring bond strengths to hydrogen : **2-propand (C-H** bond strength $\approx 370 \text{ kJ·mol}^{-1}$), triphenylmethane (C-H $\approx 300 \text{ kJ·mol}^{-1}$), tri**pheoylsilane** *(Si-H 295-310 kJ* **.mol- I), tiphenyltin(IV) hydride and tri-n-butyltin- (IV') hydride (Sn-H -z 290 kJ** - mol- '1.

For the ferrocenyl ketones (I) photoreduction was observed only with the tin- (N) hydrides to give the corresponding alcohols (II) as the major product. These products were not formed by thermal reduction, as shown by monitoring control samples in the absence of an ultra-violet source. The quantum yields for photoreduction were low, and values could not be estimated accurately because the radiation used was polychromatic and because a solid deposit formed on the wall of the vessel nearest to the lamp in most reactions. Values of quantum yield (ϕ) for the photoreduction of acetylferrocene are shown in the Table 1. Where no reduction was **observed** *estimates of* **the** upper limit **for 0 are given.**

TABLE 1

Jfradiation of acetylrerrocene with 2-propanol using either quartz- or Pyrex-JJJtered light at a reaction temperature of either 25" *or 7U' gave: no* **detectable reduction products and no acetone- With triphenylmethane, triphenylsilane and triphenyltin- {!Yj hydride products were formed by photo&em&J decomposition of the reducing** .._.. *c*nt⁶.

The lowest excited states of acylfemxenes, We those of acylnaphthaleneq are not (n, π^*) and the oxygen atom has little radical character. The reduced efficiency of **the reactions for acylrerrocenes is probably a** *result* **of the lower energy of the excited states Estimates of the enthalpy changes in the primary reaction step [eqn. (3)] suggest that the ineffitiency of the photoreduction of** *ferracenyl* **ketones even by tin- (IV) hydrides arises because the initial step is relatively slow and physicA decay of the excited** state competes *effectively* with chemical reaction.

$$
[C_{10}H_7C(O)R]^* + R_3SnH \rightarrow C_{10}H_7\dot{C}R(OH) + R_3'Sn \qquad \Delta H \approx -60 \text{ kJ} \cdot mol^{-1}
$$

$$
[FcC(O)R]^* + R_3'SnH \rightarrow Fc\dot{C}R(OH) + R_3'Sn \qquad \Delta H \approx +15 \text{ kJ} \cdot mol^{-1}
$$
 (3)

$$
(Fc = C_{10}H_9Fe)
$$

By analogy with acylnaphthalenes, the acylferrocenes might undergo photoreduction with tertiary amines by way of electron transfer to the ferrocene. We therefore irradiated acylferrocenes $[(I); R = H, CH_3, Ph]$ in 2-propanol in the presence of **triethylamine (up to 25 % v/v). Although the solution darkened a little on prolonged irradiation, no reduction products of the ferroccncs were detected. This implies that** electron transfer to the excited state of the acylferrocene from the tertiary amine is not **a fast reaction.**

Whenever a ferrocenyl ketone was irradiated in methanol as solvent a rapid change in colour of the solution was observed. This effect was mvestigated further, particularly in view of the inertness of 2-propanol. Acylferrocenes $\lceil \cdot (1) \rceil$ **;** $R = CH_3$ **,** $Ph \rceil$ **irradiated in methanol were consumed with a quantum yield of 0.02 or greater. In the absence of oxygen the colour faded to a pale yellow-brown, and the solution was very sensitive to oxidation, darkening and depositing a brown precipitate on exposure to air or more rapidIy on addition of manganese dioxide. The precipitate contained over 70% of the original iron In the solution cyclopentadiene was identified by GLC. A less volatile, colourless product was observed as a major component on thin layer chromatography (TLC) of the reaction mixture. This product survived treatment with acid, but decomposed slowly on standing and could not be isolated** A **different product** of this **type (as indicated by TLC) was obtained from each ketone, and was probably derived from the substituted ring of the acylferrocene.**

The effect of methanol and of water **in this reaction was investigated by irradia**tion of acetylferrocene in 30% v/v methanol in dioxane and in 30% v/v water in **dioxane (the photoreaction is much slower in dioxan than in the mixed solvents).** With the methanolic solvent photoreaction occurred with a quantum yield of 0.01– **0.02, and in the aqueous solvent reaction was about five times as efficient. Infra-red analysis of the products from the aqueous solution indicated the presence of carboxylate, and is in agreement with the findings of Ali, Cox and Kemp'.**

The effectiveness of methanol and water in bringing about photoreaction, and the relative ineffectiveness of triethylamine, support the proposal of Tarr and Wiles⁸ **that electron transfer occurs from the excited state of the ferrocenyl ketone to the other reagent [eqn. (4)]. Fenicinium ions break down in the presence of radicals, which accounts for the precipitation of iron compounds and the production of cyclopentadieneg.**

$$
[FcC(O)R]^* + CH_3OH \rightarrow FC^+C(O)R + CH_3 + OH^-
$$
 (4)

EXPERIMENTAL

Formyl¹⁰-, acetyl¹¹- and benzoyl¹²-ferrocene, tri-n-butyltin(IV) hydride¹³ and **triphenyltin(IV) hydride6 were prepared via standard procedures. Commercial samples of triphenylsilaue (B.D.H.) and tripbenylmethane (B-D-H) were used. Light petroleum (b-p. m) was used as solvent unless otherwise stated. Methanol and**

2-propanol were dried via the Grigaard procedure and distilled prior to use. Dioxane was dried with sodium and distilled.

Irradiation procedure

Oxygen-fke nitrogen was bubbled through all the solutions **priorto irradiation-A 500 watt medium pressure mercury arc tube (Hauovia 6744) was used with a quartz filter, and a 100 watt medium pressure mercury arc tube (Hanovia 12277) with a Pyrex glass filter. Quantum yields were estimated by comparison with valerophenone in benxene14 as a secondary standard actinometer, with corrections fore diflerences in absorption characteristics.**

In the methanol experiments cyclopentadiene was identified and estimated by gasliquid chromatography with a Pye series 104 chromatogmph using a 0.004 x 1.5 m cohmm packed with 10 % polyethylene glycol on Kieselguhr The absence bf acetone in the experiments using 2-propauol was confirmed using gas-liquid chromatography (conditions as above) by comparison with an authentic sample.

All the reactions were monitored by thin-layer chromatography using Eastman Chromagram Sheet 6060 (silica gel with fluorescent indicator) and 15 % ether/light petroleum mixture. The R_r values of the alcohols \lceil **(II) ;** $R = H$ **, CH₃, Ph₁ were checked against those of authentic samples.**

In the aqueous dioxane experiment the solvent was removed under reduced pressure, and the infra-red spectrum of the crude product was recorded. A strong absorption band at 1540 cm^{-1} was taken to indicate the presence of carboxylate.

REFERENCES

- **1 M. Rawch, M. Vogel and H. Rosenberg. J. Org. Cbem, 22 (1957) 903.**
- 2 J. D. Coyle and H. A. J. Carless, *Chem. Soc. Rep.*, 1 (1972) 465.
- **3 G. S. Hammond and P- Lccrmakug J. Amer.** *Ckm Sot_ 84* **(1962) 207.**
- 4 S. G. Cohen, G. A. Davis and W. D. K. Clark, J. Amer. Chem. Soc., 94 (1972) 869.
- **5 H. H. Jaffk J.** *Phys Ckm,* **21(1953) 156.**
- 6 H. Gilman and J. Eisch, *J. Org. Chem.*, 20 (1955) 763.
- **7 L. H. Ali, k COX and T. J. KI?JIIR J- Chem Sot.** *Ckm Commun, (1972) 265.*
- *8* **A M. Tan and D. M. Wiles Can J. Chem 46 (1%8)** *27X*
- *9* **A. L. J. Be&with and R J. Lcydon,** *Tetmkdron L.er~* **(1963) 385.**
- **10 D. J. Graham, R V. Lindsey. G. W- Parshall, M L Peterson and G. M. Whitman,** *J. Amer. Ckm Sot, 79 (1957)* **3416.**
- **11 G. Will&so& Org- SIR CofL VOL. 4 (1963) 476.**
- **12 N. WeLiky and E. S. Goula,** *J. Amer. Chem Sot, 79 (1957)* **2742**
- 13 G. J. van der Kerk and J. G. A. Luijten, *J. Appl. Chem.*, 7 (1957) 369.
- *14* **P. J. Wagner and** A E **Kemppainen.** *J. Amer- Ckm Sot, 90 (1%8) 5896.*